mirror of
https://github.com/DaanVandenBosch/phantasmal-world.git
synced 2025-04-04 22:58:29 +08:00
225 lines
8.2 KiB
TypeScript
225 lines
8.2 KiB
TypeScript
import solver from 'javascript-lp-solver';
|
|
import { IObservableArray, observable, runInAction } from "mobx";
|
|
import { Difficulties, Difficulty, Item, NpcType, SectionId, SectionIds, KONDRIEU_PROB, RARE_ENEMY_PROB, HuntMethod } from "../domain";
|
|
import { huntMethodStore } from "./HuntMethodStore";
|
|
import { itemDropStore } from './ItemDropStore';
|
|
|
|
export class WantedItem {
|
|
@observable readonly item: Item;
|
|
@observable amount: number;
|
|
|
|
constructor(item: Item, amount: number) {
|
|
this.item = item;
|
|
this.amount = amount;
|
|
}
|
|
}
|
|
|
|
export class OptimizationResult {
|
|
public readonly totalTime: number;
|
|
|
|
constructor(
|
|
public readonly difficulty: Difficulty,
|
|
public readonly sectionId: SectionId,
|
|
public readonly methodName: string,
|
|
public readonly methodTime: number,
|
|
public readonly runs: number,
|
|
public readonly itemCounts: Map<Item, number>
|
|
) {
|
|
this.totalTime = runs * methodTime;
|
|
}
|
|
}
|
|
|
|
// TODO: Prefer methods that don't split pan arms over methods that do.
|
|
// TODO: Row of totals.
|
|
// TODO: save state in url for easy sharing.
|
|
// TODO: group similar methods (e.g. same difficulty, same quest and similar ID).
|
|
// This way people can choose their preferred section ID.
|
|
// TODO: order of items in results table should match order in wanted table.
|
|
// TODO: boxes.
|
|
class HuntOptimizerStore {
|
|
@observable readonly wantedItems: Array<WantedItem> = [];
|
|
@observable readonly result: IObservableArray<OptimizationResult> = observable.array();
|
|
|
|
optimize = async () => {
|
|
if (!this.wantedItems.length) {
|
|
this.result.splice(0);
|
|
return;
|
|
}
|
|
|
|
const methods = await huntMethodStore.methods.current.promise;
|
|
const dropTable = await itemDropStore.enemyDrops.current.promise;
|
|
|
|
// Add a constraint per wanted item.
|
|
const constraints: { [itemName: string]: { min: number } } = {};
|
|
|
|
for (const wanted of this.wantedItems) {
|
|
constraints[wanted.item.name] = { min: wanted.amount };
|
|
}
|
|
|
|
// Add a variable to the LP model per method per difficulty per section ID.
|
|
// When a method with pan arms is encountered, two variables are added. One for the method
|
|
// with migiums and hidooms and one with pan arms.
|
|
// Each variable has a time property to minimize and a property per item with the number
|
|
// of enemies that drop the item multiplied by the corresponding drop rate as its value.
|
|
type Variable = {
|
|
time: number,
|
|
[itemName: string]: number,
|
|
}
|
|
const variables: { [methodName: string]: Variable } = {};
|
|
|
|
type VariableDetails = {
|
|
method: HuntMethod,
|
|
difficulty: Difficulty,
|
|
sectionId: SectionId,
|
|
splitPanArms: boolean,
|
|
}
|
|
const variableDetails: Map<string, VariableDetails> = new Map();
|
|
|
|
const wantedItems = new Set(this.wantedItems.filter(w => w.amount > 0).map(w => w.item));
|
|
|
|
for (const method of methods) {
|
|
// Counts include rare enemies, so they are fractional.
|
|
const counts = new Map<NpcType, number>();
|
|
|
|
for (const enemy of method.quest.enemies) {
|
|
const count = counts.get(enemy.type);
|
|
|
|
if (enemy.type.rareType == null) {
|
|
counts.set(enemy.type, (count || 0) + 1);
|
|
} else {
|
|
let rate, rareRate;
|
|
|
|
if (enemy.type.rareType === NpcType.Kondrieu) {
|
|
rate = 1 - KONDRIEU_PROB;
|
|
rareRate = KONDRIEU_PROB;
|
|
} else {
|
|
rate = 1 - RARE_ENEMY_PROB;
|
|
rareRate = RARE_ENEMY_PROB;
|
|
}
|
|
|
|
counts.set(enemy.type, (count || 0) + rate);
|
|
|
|
const rareCount = counts.get(enemy.type.rareType);
|
|
counts.set(enemy.type.rareType, (rareCount || 0) + rareRate);
|
|
}
|
|
}
|
|
|
|
// Create a secondary counts map if there are any pan arms that can be split into
|
|
// migiums and hidooms.
|
|
const countsList: Array<Map<NpcType, number>> = [counts];
|
|
const panArmsCount = counts.get(NpcType.PanArms);
|
|
const panArms2Count = counts.get(NpcType.PanArms2);
|
|
|
|
if (panArmsCount || panArms2Count) {
|
|
const splitCounts = new Map(counts);
|
|
|
|
if (panArmsCount) {
|
|
splitCounts.delete(NpcType.PanArms);
|
|
splitCounts.set(NpcType.Migium, panArmsCount);
|
|
splitCounts.set(NpcType.Hidoom, panArmsCount);
|
|
}
|
|
|
|
if (panArms2Count) {
|
|
splitCounts.delete(NpcType.PanArms2);
|
|
splitCounts.set(NpcType.Migium2, panArms2Count);
|
|
splitCounts.set(NpcType.Hidoom2, panArms2Count);
|
|
}
|
|
|
|
countsList.push(splitCounts);
|
|
}
|
|
|
|
for (let i = 0; i < countsList.length; i++) {
|
|
const counts = countsList[i];
|
|
const splitPanArms = i === 1;
|
|
|
|
for (const diff of Difficulties) {
|
|
for (const sectionId of SectionIds) {
|
|
const variable: Variable = {
|
|
time: method.time
|
|
};
|
|
let addVariable = false;
|
|
|
|
for (const [npcType, count] of counts.entries()) {
|
|
const drop = dropTable.getDrop(diff, sectionId, npcType);
|
|
|
|
if (drop && wantedItems.has(drop.item)) {
|
|
const value = variable[drop.item.name] || 0;
|
|
variable[drop.item.name] = value + count * drop.rate;
|
|
addVariable = true;
|
|
}
|
|
}
|
|
|
|
if (addVariable) {
|
|
let name = `${diff}\t${sectionId}\t${method.name}`;
|
|
|
|
if (splitPanArms) {
|
|
name += ' (Split Pan Arms)';
|
|
}
|
|
|
|
variables[name] = variable;
|
|
variableDetails.set(name, {
|
|
method,
|
|
difficulty: diff,
|
|
sectionId,
|
|
splitPanArms
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const result: {
|
|
feasible: boolean,
|
|
bounded: boolean,
|
|
result: number,
|
|
[method: string]: number | boolean
|
|
} = solver.Solve({
|
|
optimize: 'time',
|
|
opType: 'min',
|
|
constraints,
|
|
variables
|
|
});
|
|
|
|
runInAction(() => {
|
|
this.result.splice(0);
|
|
|
|
if (!result.feasible) {
|
|
return;
|
|
}
|
|
|
|
for (const [variableName, runsOrOther] of Object.entries(result)) {
|
|
const details = variableDetails.get(variableName);
|
|
|
|
if (details) {
|
|
const { method, difficulty, sectionId, splitPanArms } = details;
|
|
const runs = runsOrOther as number;
|
|
const variable = variables[variableName];
|
|
|
|
const items = new Map<Item, number>();
|
|
|
|
for (const [itemName, expectedValue] of Object.entries(variable)) {
|
|
for (const item of wantedItems) {
|
|
if (itemName === item.name) {
|
|
items.set(item, runs * expectedValue);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
this.result.push(new OptimizationResult(
|
|
difficulty,
|
|
sectionId,
|
|
method.name + (splitPanArms ? ' (Split Pan Arms)' : ''),
|
|
method.time,
|
|
runs,
|
|
items
|
|
));
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
export const huntOptimizerStore = new HuntOptimizerStore();
|