phantasmal-world/src/stores/HuntOptimizerStore.ts

225 lines
8.2 KiB
TypeScript

import solver from 'javascript-lp-solver';
import { IObservableArray, observable, runInAction } from "mobx";
import { Difficulties, Difficulty, Item, NpcType, SectionId, SectionIds, KONDRIEU_PROB, RARE_ENEMY_PROB, HuntMethod } from "../domain";
import { huntMethodStore } from "./HuntMethodStore";
import { itemDropStore } from './ItemDropStore';
export class WantedItem {
@observable readonly item: Item;
@observable amount: number;
constructor(item: Item, amount: number) {
this.item = item;
this.amount = amount;
}
}
export class OptimizationResult {
public readonly totalTime: number;
constructor(
public readonly difficulty: Difficulty,
public readonly sectionId: SectionId,
public readonly methodName: string,
public readonly methodTime: number,
public readonly runs: number,
public readonly itemCounts: Map<Item, number>
) {
this.totalTime = runs * methodTime;
}
}
// TODO: Prefer methods that don't split pan arms over methods that do.
// TODO: Row of totals.
// TODO: save state in url for easy sharing.
// TODO: group similar methods (e.g. same difficulty, same quest and similar ID).
// This way people can choose their preferred section ID.
// TODO: order of items in results table should match order in wanted table.
// TODO: boxes.
class HuntOptimizerStore {
@observable readonly wantedItems: Array<WantedItem> = [];
@observable readonly result: IObservableArray<OptimizationResult> = observable.array();
optimize = async () => {
if (!this.wantedItems.length) {
this.result.splice(0);
return;
}
const methods = await huntMethodStore.methods.current.promise;
const dropTable = await itemDropStore.enemyDrops.current.promise;
// Add a constraint per wanted item.
const constraints: { [itemName: string]: { min: number } } = {};
for (const wanted of this.wantedItems) {
constraints[wanted.item.name] = { min: wanted.amount };
}
// Add a variable to the LP model per method per difficulty per section ID.
// When a method with pan arms is encountered, two variables are added. One for the method
// with migiums and hidooms and one with pan arms.
// Each variable has a time property to minimize and a property per item with the number
// of enemies that drop the item multiplied by the corresponding drop rate as its value.
type Variable = {
time: number,
[itemName: string]: number,
}
const variables: { [methodName: string]: Variable } = {};
type VariableDetails = {
method: HuntMethod,
difficulty: Difficulty,
sectionId: SectionId,
splitPanArms: boolean,
}
const variableDetails: Map<string, VariableDetails> = new Map();
const wantedItems = new Set(this.wantedItems.filter(w => w.amount > 0).map(w => w.item));
for (const method of methods) {
// Counts include rare enemies, so they are fractional.
const counts = new Map<NpcType, number>();
for (const enemy of method.quest.enemies) {
const count = counts.get(enemy.type);
if (enemy.type.rareType == null) {
counts.set(enemy.type, (count || 0) + 1);
} else {
let rate, rareRate;
if (enemy.type.rareType === NpcType.Kondrieu) {
rate = 1 - KONDRIEU_PROB;
rareRate = KONDRIEU_PROB;
} else {
rate = 1 - RARE_ENEMY_PROB;
rareRate = RARE_ENEMY_PROB;
}
counts.set(enemy.type, (count || 0) + rate);
const rareCount = counts.get(enemy.type.rareType);
counts.set(enemy.type.rareType, (rareCount || 0) + rareRate);
}
}
// Create a secondary counts map if there are any pan arms that can be split into
// migiums and hidooms.
const countsList: Array<Map<NpcType, number>> = [counts];
const panArmsCount = counts.get(NpcType.PanArms);
const panArms2Count = counts.get(NpcType.PanArms2);
if (panArmsCount || panArms2Count) {
const splitCounts = new Map(counts);
if (panArmsCount) {
splitCounts.delete(NpcType.PanArms);
splitCounts.set(NpcType.Migium, panArmsCount);
splitCounts.set(NpcType.Hidoom, panArmsCount);
}
if (panArms2Count) {
splitCounts.delete(NpcType.PanArms2);
splitCounts.set(NpcType.Migium2, panArms2Count);
splitCounts.set(NpcType.Hidoom2, panArms2Count);
}
countsList.push(splitCounts);
}
for (let i = 0; i < countsList.length; i++) {
const counts = countsList[i];
const splitPanArms = i === 1;
for (const diff of Difficulties) {
for (const sectionId of SectionIds) {
const variable: Variable = {
time: method.time
};
let addVariable = false;
for (const [npcType, count] of counts.entries()) {
const drop = dropTable.getDrop(diff, sectionId, npcType);
if (drop && wantedItems.has(drop.item)) {
const value = variable[drop.item.name] || 0;
variable[drop.item.name] = value + count * drop.rate;
addVariable = true;
}
}
if (addVariable) {
let name = `${diff}\t${sectionId}\t${method.name}`;
if (splitPanArms) {
name += ' (Split Pan Arms)';
}
variables[name] = variable;
variableDetails.set(name, {
method,
difficulty: diff,
sectionId,
splitPanArms
});
}
}
}
}
}
const result: {
feasible: boolean,
bounded: boolean,
result: number,
[method: string]: number | boolean
} = solver.Solve({
optimize: 'time',
opType: 'min',
constraints,
variables
});
runInAction(() => {
this.result.splice(0);
if (!result.feasible) {
return;
}
for (const [variableName, runsOrOther] of Object.entries(result)) {
const details = variableDetails.get(variableName);
if (details) {
const { method, difficulty, sectionId, splitPanArms } = details;
const runs = runsOrOther as number;
const variable = variables[variableName];
const items = new Map<Item, number>();
for (const [itemName, expectedValue] of Object.entries(variable)) {
for (const item of wantedItems) {
if (itemName === item.name) {
items.set(item, runs * expectedValue);
break;
}
}
}
this.result.push(new OptimizationResult(
difficulty,
sectionId,
method.name + (splitPanArms ? ' (Split Pan Arms)' : ''),
method.time,
runs,
items
));
}
}
});
}
}
export const huntOptimizerStore = new HuntOptimizerStore();