import solver from 'javascript-lp-solver'; import { autorun, IObservableArray, observable } from "mobx"; import { Difficulties, Difficulty, HuntMethod, Item, KONDRIEU_PROB, NpcType, RARE_ENEMY_PROB, SectionId, SectionIds } from "../domain"; import { applicationStore } from './ApplicationStore'; import { huntMethodStore } from "./HuntMethodStore"; import { itemDropStore } from './ItemDropStore'; import { itemStore } from './ItemStore'; export class WantedItem { @observable readonly item: Item; @observable amount: number; constructor(item: Item, amount: number) { this.item = item; this.amount = amount; } } export class OptimalResult { constructor( readonly wantedItems: Array, readonly optimalMethods: Array ) { } } export class OptimalMethod { readonly totalTime: number; constructor( readonly difficulty: Difficulty, readonly sectionIds: Array, readonly methodName: string, readonly methodTime: number, readonly runs: number, readonly itemCounts: Map ) { this.totalTime = runs * methodTime; } } // TODO: Prefer methods that don't split pan arms over methods that do. // For some reason this doesn't actually seem to be a problem, should probably investigate. // TODO: Show expected value or probability per item per method. // Can be useful when deciding which item to hunt first. // TODO: boxes. class HuntOptimizerStore { @observable readonly wantedItems: IObservableArray = observable.array(); @observable result?: OptimalResult; constructor() { this.initialize(); } initialize = async () => { try { await this.loadFromLocalStorage(); autorun(this.storeInLocalStorage); } catch (e) { console.error(e); } } loadFromLocalStorage = async () => { const wantedItemsJson = localStorage.getItem( `HuntOptimizerStore.wantedItems.${applicationStore.currentServer}` ); if (wantedItemsJson) { const items = await itemStore.items.current.promise; const wi = JSON.parse(wantedItemsJson); const wantedItems: WantedItem[] = []; for (const { itemName, amount } of wi) { const item = items.find(item => item.name === itemName); if (item) { wantedItems.push(new WantedItem(item, amount)); } } this.wantedItems.replace(wantedItems); } } storeInLocalStorage = () => { try { localStorage.setItem( `HuntOptimizerStore.wantedItems.${applicationStore.currentServer}`, JSON.stringify( this.wantedItems.map(({ item, amount }) => ({ itemName: item.name, amount })) ) ); } catch (e) { console.error(e); } } optimize = async () => { if (!this.wantedItems.length) { this.result = undefined; return; } // Initialize this set before awaiting data, so user changes don't affect this optimization // run from this point on. const wantedItems = new Set(this.wantedItems.filter(w => w.amount > 0).map(w => w.item)); const methods = await huntMethodStore.methods.current.promise; const dropTable = await itemDropStore.enemyDrops.current.promise; // Add a constraint per wanted item. const constraints: { [itemName: string]: { min: number } } = {}; for (const wanted of this.wantedItems) { constraints[wanted.item.name] = { min: wanted.amount }; } // Add a variable to the LP model per method per difficulty per section ID. // When a method with pan arms is encountered, two variables are added. One for the method // with migiums and hidooms and one with pan arms. // Each variable has a time property to minimize and a property per item with the number // of enemies that drop the item multiplied by the corresponding drop rate as its value. type Variable = { time: number, [itemName: string]: number, } const variables: { [methodName: string]: Variable } = {}; type VariableDetails = { method: HuntMethod, difficulty: Difficulty, sectionId: SectionId, splitPanArms: boolean, } const variableDetails: Map = new Map(); for (const method of methods) { // Counts include rare enemies, so they are fractional. const counts = new Map(); for (const enemy of method.enemies) { const count = counts.get(enemy.type); if (enemy.type.rareType == null) { counts.set(enemy.type, (count || 0) + 1); } else { let rate, rareRate; if (enemy.type.rareType === NpcType.Kondrieu) { rate = 1 - KONDRIEU_PROB; rareRate = KONDRIEU_PROB; } else { rate = 1 - RARE_ENEMY_PROB; rareRate = RARE_ENEMY_PROB; } counts.set(enemy.type, (count || 0) + rate); const rareCount = counts.get(enemy.type.rareType); counts.set(enemy.type.rareType, (rareCount || 0) + rareRate); } } // Create a secondary counts map if there are any pan arms that can be split into // migiums and hidooms. const countsList: Array> = [counts]; const panArmsCount = counts.get(NpcType.PanArms); if (panArmsCount) { const splitCounts = new Map(counts); splitCounts.delete(NpcType.PanArms); splitCounts.set(NpcType.Migium, panArmsCount); splitCounts.set(NpcType.Hidoom, panArmsCount); countsList.push(splitCounts); } const panArms2Count = counts.get(NpcType.PanArms2); if (panArms2Count) { const splitCounts = new Map(counts); splitCounts.delete(NpcType.PanArms2); splitCounts.set(NpcType.Migium2, panArms2Count); splitCounts.set(NpcType.Hidoom2, panArms2Count); countsList.push(splitCounts); } for (let i = 0; i < countsList.length; i++) { const counts = countsList[i]; const splitPanArms = i === 1; for (const diff of Difficulties) { for (const sectionId of SectionIds) { // Will contain an entry per wanted item dropped by enemies in this method/ // difficulty/section ID combo. const variable: Variable = { time: method.time }; // Only add the variable if the method provides at least 1 item we want. let addVariable = false; for (const [npcType, count] of counts.entries()) { const drop = dropTable.getDrop(diff, sectionId, npcType); if (drop && wantedItems.has(drop.item)) { const value = variable[drop.item.name] || 0; variable[drop.item.name] = value + count * drop.rate; addVariable = true; } } if (addVariable) { const name = this.fullMethodName( diff, sectionId, method, splitPanArms ); variables[name] = variable; variableDetails.set(name, { method, difficulty: diff, sectionId, splitPanArms }); } } } } } const result: { feasible: boolean, bounded: boolean, result: number, /** * Value will always be a number if result is indexed with an actual method name. */ [method: string]: number | boolean } = solver.Solve({ optimize: 'time', opType: 'min', constraints, variables }); if (!result.feasible) { this.result = undefined; return; } const optimalMethods: Array = []; // Loop over the entries in result, ignore standard properties that aren't variables. for (const [variableName, runsOrOther] of Object.entries(result)) { const details = variableDetails.get(variableName); if (details) { const { method, difficulty, sectionId, splitPanArms } = details; const runs = runsOrOther as number; const variable = variables[variableName]; const items = new Map(); for (const [itemName, expectedAmount] of Object.entries(variable)) { for (const item of wantedItems) { if (itemName === item.name) { items.set(item, runs * expectedAmount); break; } } } // Find all section IDs that provide the same items with the same expected amount. // E.g. if you need a spread needle and a bringer's right arm, using either // purplenum or yellowboze will give you the exact same probabilities. const sectionIds: Array = []; for (const sid of SectionIds) { let matchFound = true; if (sid !== sectionId) { const v = variables[ this.fullMethodName(difficulty, sid, method, splitPanArms) ]; if (!v) { matchFound = false; } else { for (const itemName of Object.keys(variable)) { if (variable[itemName] !== v[itemName]) { matchFound = false; break; } } } } if (matchFound) { sectionIds.push(sid); } } optimalMethods.push(new OptimalMethod( difficulty, sectionIds, method.name + (splitPanArms ? ' (Split Pan Arms)' : ''), method.time, runs, items )); } } this.result = new OptimalResult( [...wantedItems], optimalMethods ); } private fullMethodName( difficulty: Difficulty, sectionId: SectionId, method: HuntMethod, splitPanArms: boolean ): string { let name = `${difficulty}\t${sectionId}\t${method.name}`; if (splitPanArms) name += ' (Split Pan Arms)'; return name; } } export const huntOptimizerStore = new HuntOptimizerStore();