import solver from 'javascript-lp-solver'; import { IObservableArray, observable, runInAction } from "mobx"; import { Difficulties, Difficulty, Item, NpcType, SectionId, SectionIds, KONDRIEU_PROB, RARE_ENEMY_PROB } from "../domain"; import { huntMethodStore } from "./HuntMethodStore"; import { itemDropStore } from './ItemDropStore'; export class WantedItem { @observable readonly item: Item; @observable amount: number; constructor(item: Item, amount: number) { this.item = item; this.amount = amount; } } export class OptimizationResult { public readonly totalTime: number; constructor( public readonly difficulty: Difficulty, public readonly sectionId: SectionId, public readonly methodName: string, public readonly methodTime: number, public readonly runs: number, public readonly itemCounts: Map ) { this.totalTime = runs * methodTime; } } // TODO: Deal with hidoom and migium. // TODO: Row of totals. // TODO: group similar methods (e.g. same difficulty, same quest and similar ID). // This way people can choose their preferred section ID. // TODO: order of items in results table should match order in wanted table. // TODO: boxes. class HuntOptimizerStore { @observable readonly wantedItems: Array = []; @observable readonly result: IObservableArray = observable.array(); optimize = async () => { if (!this.wantedItems.length) { this.result.splice(0); return; } const methods = await huntMethodStore.methods.current.promise; const dropTable = await itemDropStore.enemyDrops.current.promise; // Add a constraint per wanted item. const constraints: { [itemName: string]: { min: number } } = {}; for (const wanted of this.wantedItems) { constraints[wanted.item.name] = { min: wanted.amount }; } // Add a variable to the LP model per method per difficulty per section ID. // Each variable has a time property to minimize and a property per item with the number // of enemies that drop the item multiplied by the corresponding drop rate as its value. type Variable = { time: number, [itemName: string]: number } const variables: { [methodName: string]: Variable } = {}; const wantedItems = new Set(this.wantedItems.filter(w => w.amount > 0).map(w => w.item)); for (const method of methods) { // Counts include rare enemies, so they are fractional. const counts = new Map(); for (const enemy of method.quest.enemies) { const count = counts.get(enemy.type); if (enemy.type.rareType == null) { counts.set(enemy.type, (count || 0) + 1); } else { let rate, rareRate; if (enemy.type.rareType === NpcType.Kondrieu) { rate = 1 - KONDRIEU_PROB; rareRate = KONDRIEU_PROB; } else { rate = 1 - RARE_ENEMY_PROB; rareRate = RARE_ENEMY_PROB; } counts.set(enemy.type, (count || 0) + rate); const rareCount = counts.get(enemy.type.rareType); counts.set(enemy.type.rareType, (rareCount || 0) + rareRate); } } for (const diff of Difficulties) { for (const sectionId of SectionIds) { const variable: Variable = { time: method.time }; let addVariable = false; for (const [npcType, count] of counts.entries()) { const drop = dropTable.getDrop(diff, sectionId, npcType); if (drop && wantedItems.has(drop.item)) { const value = variable[drop.item.name] || 0; variable[drop.item.name] = value + count * drop.rate; addVariable = true; } } if (addVariable) { variables[`${diff}\t${sectionId}\t${method.quest.name}`] = variable; } } } } const result: { feasible: boolean, bounded: boolean, result: number, [method: string]: number | boolean } = solver.Solve({ optimize: 'time', opType: 'min', constraints, variables }); runInAction(() => { this.result.splice(0); if (!result.feasible) { return; } for (const [method, runsOrOther] of Object.entries(result)) { const [diffStr, sIdStr, methodName] = method.split('\t', 3); if (sIdStr && methodName) { const runs = runsOrOther as number; const variable = variables[method]; const diff = (Difficulty as any)[diffStr]; const sectionId = (SectionId as any)[sIdStr]; const items = new Map(); for (const [itemName, expectedValue] of Object.entries(variable)) { for (const item of wantedItems) { if (itemName === item.name) { items.set(item, runs * expectedValue); break; } } } this.result.push(new OptimizationResult( diff, sectionId, methodName, 0.5, runs, items )); } } }); } } export const huntOptimizerStore = new HuntOptimizerStore();