import solver from "javascript-lp-solver"; import { autorun, computed, IObservableArray, observable } from "mobx"; import { Difficulties, Difficulty, HuntMethod, ItemType, KONDRIEU_PROB, RARE_ENEMY_PROB, SectionId, SectionIds, } from "../domain"; import { hunt_optimizer_persister } from "../persistence/HuntOptimizerPersister"; import { application_store } from "./ApplicationStore"; import { hunt_method_store } from "./HuntMethodStore"; import { item_drop_stores } from "./ItemDropStore"; import { item_type_stores } from "./ItemTypeStore"; import { Episode } from "../data_formats/parsing/quest/Episode"; import { npc_data, NpcType } from "../data_formats/parsing/quest/npc_types"; export class WantedItem { @observable readonly item_type: ItemType; @observable amount: number; constructor(item_type: ItemType, amount: number) { this.item_type = item_type; this.amount = amount; } } export class OptimalResult { readonly wanted_items: ItemType[]; readonly optimal_methods: OptimalMethod[]; constructor(wanted_items: ItemType[], optimal_methods: OptimalMethod[]) { this.wanted_items = wanted_items; this.optimal_methods = optimal_methods; } } export class OptimalMethod { readonly difficulty: Difficulty; readonly section_ids: SectionId[]; readonly method_name: string; readonly method_episode: Episode; readonly method_time: number; readonly runs: number; readonly total_time: number; readonly item_counts: Map; constructor( difficulty: Difficulty, section_ids: SectionId[], method_name: string, method_episode: Episode, method_time: number, runs: number, item_counts: Map, ) { this.difficulty = difficulty; this.section_ids = section_ids; this.method_name = method_name; this.method_episode = method_episode; this.method_time = method_time; this.runs = runs; this.total_time = runs * method_time; this.item_counts = item_counts; } } // TODO: take into account mothmants spawned from mothverts. // TODO: take into account split slimes. // TODO: Prefer methods that don't split pan arms over methods that do. // For some reason this doesn't actually seem to be a problem, should probably investigate. // TODO: Show expected value or probability per item per method. // Can be useful when deciding which item to hunt first. // TODO: boxes. class HuntOptimizerStore { @computed get huntable_item_types(): ItemType[] { const item_drop_store = item_drop_stores.current.value; return item_type_stores.current.value.item_types.filter( i => item_drop_store.enemy_drops.get_drops_for_item_type(i.id).length, ); } // TODO: wanted items per server. @observable readonly wanted_items: IObservableArray = observable.array(); @observable result?: OptimalResult; constructor() { this.initialize_persistence(); } optimize = async () => { if (!this.wanted_items.length) { this.result = undefined; return; } // Initialize this set before awaiting data, so user changes don't affect this optimization // run from this point on. const wanted_items = new Set( this.wanted_items.filter(w => w.amount > 0).map(w => w.item_type), ); const methods = await hunt_method_store.methods.current.promise; const drop_table = (await item_drop_stores.current.promise).enemy_drops; // Add a constraint per wanted item. const constraints: { [item_name: string]: { min: number } } = {}; for (const wanted of this.wanted_items) { constraints[wanted.item_type.name] = { min: wanted.amount }; } // Add a variable to the LP model per method per difficulty per section ID. // When a method with pan arms is encountered, two variables are added. One for the method // with migiums and hidooms and one with pan arms. // Each variable has a time property to minimize and a property per item with the number // of enemies that drop the item multiplied by the corresponding drop rate as its value. type Variable = { time: number; [item_name: string]: number; }; const variables: { [method_name: string]: Variable } = {}; type VariableDetails = { method: HuntMethod; difficulty: Difficulty; section_id: SectionId; split_pan_arms: boolean; }; const variable_details: Map = new Map(); for (const method of methods) { // Counts include rare enemies, so they are fractional. const counts = new Map(); for (const [enemy_type, count] of method.enemy_counts.entries()) { const old_count = counts.get(enemy_type) || 0; const enemy = npc_data(enemy_type); if (enemy.rare_type == null) { counts.set(enemy_type, old_count + count); } else { let rate, rare_rate; if (enemy.rare_type === NpcType.Kondrieu) { rate = 1 - KONDRIEU_PROB; rare_rate = KONDRIEU_PROB; } else { rate = 1 - RARE_ENEMY_PROB; rare_rate = RARE_ENEMY_PROB; } counts.set(enemy_type, old_count + count * rate); counts.set( enemy.rare_type, (counts.get(enemy.rare_type) || 0) + count * rare_rate, ); } } // Create a secondary counts map if there are any pan arms that can be split into // migiums and hidooms. const counts_list: Map[] = [counts]; const pan_arms_count = counts.get(NpcType.PanArms); if (pan_arms_count) { const split_counts = new Map(counts); split_counts.delete(NpcType.PanArms); split_counts.set(NpcType.Migium, pan_arms_count); split_counts.set(NpcType.Hidoom, pan_arms_count); counts_list.push(split_counts); } const pan_arms_2_count = counts.get(NpcType.PanArms2); if (pan_arms_2_count) { const split_counts = new Map(counts); split_counts.delete(NpcType.PanArms2); split_counts.set(NpcType.Migium2, pan_arms_2_count); split_counts.set(NpcType.Hidoom2, pan_arms_2_count); counts_list.push(split_counts); } for (let i = 0; i < counts_list.length; i++) { const counts = counts_list[i]; const split_pan_arms = i === 1; for (const difficulty of Difficulties) { for (const section_id of SectionIds) { // Will contain an entry per wanted item dropped by enemies in this method/ // difficulty/section ID combo. const variable: Variable = { time: method.time, }; // Only add the variable if the method provides at least 1 item we want. let add_variable = false; for (const [npc_type, count] of counts.entries()) { const drop = drop_table.get_drop(difficulty, section_id, npc_type); if (drop && wanted_items.has(drop.item_type)) { const value = variable[drop.item_type.name] || 0; variable[drop.item_type.name] = value + count * drop.rate; add_variable = true; } } if (add_variable) { const name = this.full_method_name( difficulty, section_id, method, split_pan_arms, ); variables[name] = variable; variable_details.set(name, { method, difficulty, section_id, split_pan_arms, }); } } } } } const result: { feasible: boolean; bounded: boolean; result: number; /** * Value will always be a number if result is indexed with an actual method name. */ [method: string]: number | boolean; } = solver.Solve({ optimize: "time", opType: "min", constraints, variables, }); if (!result.feasible) { this.result = undefined; return; } const optimal_methods: OptimalMethod[] = []; // Loop over the entries in result, ignore standard properties that aren't variables. for (const [variable_name, runs_or_other] of Object.entries(result)) { const details = variable_details.get(variable_name); if (details) { const { method, difficulty, section_id, split_pan_arms } = details; const runs = runs_or_other as number; const variable = variables[variable_name]; const items = new Map(); for (const [item_name, expected_amount] of Object.entries(variable)) { for (const item of wanted_items) { if (item_name === item.name) { items.set(item, runs * expected_amount); break; } } } // Find all section IDs that provide the same items with the same expected amount. // E.g. if you need a spread needle and a bringer's right arm, using either // purplenum or yellowboze will give you the exact same probabilities. const section_ids: SectionId[] = []; for (const sid of SectionIds) { let match_found = true; if (sid !== section_id) { const v = variables[ this.full_method_name(difficulty, sid, method, split_pan_arms) ]; if (!v) { match_found = false; } else { for (const item_name of Object.keys(variable)) { if (variable[item_name] !== v[item_name]) { match_found = false; break; } } } } if (match_found) { section_ids.push(sid); } } optimal_methods.push( new OptimalMethod( difficulty, section_ids, method.name + (split_pan_arms ? " (Split Pan Arms)" : ""), method.episode, method.time, runs, items, ), ); } } this.result = new OptimalResult([...wanted_items], optimal_methods); }; private full_method_name( difficulty: Difficulty, section_id: SectionId, method: HuntMethod, split_pan_arms: boolean, ): string { let name = `${difficulty}\t${section_id}\t${method.id}`; if (split_pan_arms) name += "\tspa"; return name; } private initialize_persistence = async () => { this.wanted_items.replace( await hunt_optimizer_persister.load_wanted_items(application_store.current_server), ); autorun(() => { hunt_optimizer_persister.persist_wanted_items( application_store.current_server, this.wanted_items, ); }); }; } export const hunt_optimizer_store = new HuntOptimizerStore();