2019-06-04 23:04:20 +08:00
|
|
|
import solver from 'javascript-lp-solver';
|
2019-06-05 22:49:00 +08:00
|
|
|
import { IObservableArray, observable, runInAction } from "mobx";
|
|
|
|
import { Difficulties, Difficulty, Item, NpcType, SectionId, SectionIds } from "../domain";
|
2019-06-04 03:41:18 +08:00
|
|
|
import { huntMethodStore } from "./HuntMethodStore";
|
2019-06-04 23:01:51 +08:00
|
|
|
import { itemDropStore } from './ItemDropStore';
|
2019-06-04 03:41:18 +08:00
|
|
|
|
|
|
|
export class WantedItem {
|
2019-06-05 22:49:00 +08:00
|
|
|
@observable readonly item: Item;
|
2019-06-04 03:41:18 +08:00
|
|
|
@observable amount: number;
|
|
|
|
|
|
|
|
constructor(item: Item, amount: number) {
|
|
|
|
this.item = item;
|
|
|
|
this.amount = amount;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-05 22:49:00 +08:00
|
|
|
export class OptimizationResult {
|
|
|
|
public readonly totalTime: number;
|
|
|
|
|
|
|
|
constructor(
|
|
|
|
public readonly difficulty: Difficulty,
|
|
|
|
public readonly sectionId: SectionId,
|
|
|
|
public readonly methodName: string,
|
|
|
|
public readonly methodTime: number,
|
|
|
|
public readonly runs: number,
|
|
|
|
public readonly itemCounts: Map<Item, number>
|
|
|
|
) {
|
|
|
|
this.totalTime = runs * methodTime;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: group similar methods (e.g. same difficulty, same quest and similar ID).
|
|
|
|
// This way people can choose their preferred section ID.
|
2019-06-06 08:24:21 +08:00
|
|
|
// TODO: boxes.
|
|
|
|
// TODO: rare enemy variants.
|
|
|
|
// TODO: order of items in results table should match order in wanted table.
|
2019-06-04 03:41:18 +08:00
|
|
|
class HuntOptimizerStore {
|
2019-06-05 22:49:00 +08:00
|
|
|
@observable readonly wantedItems: Array<WantedItem> = [];
|
|
|
|
@observable readonly result: IObservableArray<OptimizationResult> = observable.array();
|
2019-06-04 03:41:18 +08:00
|
|
|
|
|
|
|
optimize = async () => {
|
2019-06-06 08:24:21 +08:00
|
|
|
if (!this.wantedItems.length) {
|
|
|
|
this.result.splice(0);
|
|
|
|
return;
|
|
|
|
}
|
2019-06-04 03:41:18 +08:00
|
|
|
|
2019-06-04 23:01:51 +08:00
|
|
|
const methods = await huntMethodStore.methods.current.promise;
|
|
|
|
const dropTable = await itemDropStore.enemyDrops.current.promise;
|
|
|
|
|
2019-06-05 22:49:00 +08:00
|
|
|
// Add a constraint per wanted item.
|
2019-06-04 03:41:18 +08:00
|
|
|
const constraints: { [itemName: string]: { min: number } } = {};
|
|
|
|
|
2019-06-04 23:01:51 +08:00
|
|
|
for (const wanted of this.wantedItems) {
|
|
|
|
constraints[wanted.item.name] = { min: wanted.amount };
|
2019-06-04 03:41:18 +08:00
|
|
|
}
|
|
|
|
|
2019-06-05 22:49:00 +08:00
|
|
|
// Add a variable to the LP model per method per difficulty per section ID.
|
|
|
|
// Each variable has a time property to minimize and a property per item with the number
|
|
|
|
// of enemies that drop the item multiplied by the corresponding drop rate as its value.
|
|
|
|
type Variable = {
|
|
|
|
time: number,
|
|
|
|
[itemName: string]: number
|
|
|
|
}
|
|
|
|
const variables: { [methodName: string]: Variable } = {};
|
|
|
|
|
|
|
|
const wantedItems = new Set(this.wantedItems.map(i => i.item));
|
2019-06-04 03:41:18 +08:00
|
|
|
|
2019-06-04 23:01:51 +08:00
|
|
|
for (const method of methods) {
|
|
|
|
const counts = new Map<NpcType, number>();
|
|
|
|
|
|
|
|
for (const enemy of method.quest.enemies) {
|
|
|
|
const count = counts.get(enemy.type);
|
|
|
|
counts.set(enemy.type, (count || 0) + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (const diff of Difficulties) {
|
|
|
|
for (const sectionId of SectionIds) {
|
2019-06-05 22:49:00 +08:00
|
|
|
const variable: Variable = {
|
|
|
|
time: method.time
|
2019-06-04 23:01:51 +08:00
|
|
|
};
|
2019-06-05 22:49:00 +08:00
|
|
|
let addVariable = false;
|
2019-06-04 23:01:51 +08:00
|
|
|
|
|
|
|
for (const [npcType, count] of counts.entries()) {
|
|
|
|
const drop = dropTable.getDrop(diff, sectionId, npcType);
|
2019-06-04 03:41:18 +08:00
|
|
|
|
2019-06-05 22:49:00 +08:00
|
|
|
if (drop && wantedItems.has(drop.item)) {
|
|
|
|
const value = variable[drop.item.name] || 0;
|
|
|
|
variable[drop.item.name] = value + count * drop.rate;
|
|
|
|
addVariable = true;
|
2019-06-04 23:01:51 +08:00
|
|
|
}
|
|
|
|
}
|
2019-06-04 03:41:18 +08:00
|
|
|
|
2019-06-05 22:49:00 +08:00
|
|
|
if (addVariable) {
|
|
|
|
variables[`${diff}\t${sectionId}\t${method.quest.name}`] = variable;
|
2019-06-04 23:01:51 +08:00
|
|
|
}
|
|
|
|
}
|
2019-06-04 03:41:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-05 22:49:00 +08:00
|
|
|
const result: {
|
|
|
|
feasible: boolean,
|
|
|
|
bounded: boolean,
|
|
|
|
result: number,
|
|
|
|
[method: string]: number | boolean
|
|
|
|
} = solver.Solve({
|
2019-06-04 23:01:51 +08:00
|
|
|
optimize: 'time',
|
2019-06-04 03:41:18 +08:00
|
|
|
opType: 'min',
|
|
|
|
constraints,
|
|
|
|
variables
|
|
|
|
});
|
2019-06-04 23:01:51 +08:00
|
|
|
|
2019-06-05 22:49:00 +08:00
|
|
|
runInAction(() => {
|
|
|
|
this.result.splice(0);
|
|
|
|
|
2019-06-06 08:24:21 +08:00
|
|
|
if (!result.feasible) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2019-06-05 22:49:00 +08:00
|
|
|
for (const [method, runsOrOther] of Object.entries(result)) {
|
|
|
|
const [diffStr, sIdStr, methodName] = method.split('\t', 3);
|
|
|
|
|
|
|
|
if (sIdStr && methodName) {
|
|
|
|
const runs = runsOrOther as number;
|
|
|
|
const variable = variables[method];
|
|
|
|
const diff = (Difficulty as any)[diffStr];
|
|
|
|
const sectionId = (SectionId as any)[sIdStr];
|
|
|
|
|
|
|
|
const items = new Map<Item, number>();
|
|
|
|
|
|
|
|
for (const [itemName, expectedValue] of Object.entries(variable)) {
|
|
|
|
for (const item of wantedItems) {
|
|
|
|
if (itemName === item.name) {
|
|
|
|
items.set(item, runs * expectedValue);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
this.result.push(new OptimizationResult(
|
|
|
|
diff,
|
|
|
|
sectionId,
|
|
|
|
methodName,
|
|
|
|
0.5,
|
|
|
|
runs,
|
|
|
|
items
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
});
|
2019-06-04 03:41:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
export const huntOptimizerStore = new HuntOptimizerStore();
|