phantasmal-world/src/stores/HuntOptimizerStore.ts

335 lines
12 KiB
TypeScript
Raw Normal View History

2019-06-04 23:04:20 +08:00
import solver from 'javascript-lp-solver';
2019-06-16 18:57:17 +08:00
import { autorun, IObservableArray, observable } from "mobx";
2019-06-11 19:13:54 +08:00
import { Difficulties, Difficulty, HuntMethod, Item, KONDRIEU_PROB, NpcType, RARE_ENEMY_PROB, SectionId, SectionIds } from "../domain";
import { applicationStore } from './ApplicationStore';
import { huntMethodStore } from "./HuntMethodStore";
import { itemDropStore } from './ItemDropStore';
2019-06-11 19:13:54 +08:00
import { itemStore } from './ItemStore';
export class WantedItem {
@observable readonly item: Item;
@observable amount: number;
constructor(item: Item, amount: number) {
this.item = item;
this.amount = amount;
}
}
export class OptimalResult {
constructor(
readonly wantedItems: Array<Item>,
readonly optimalMethods: Array<OptimalMethod>
) { }
}
export class OptimalMethod {
readonly totalTime: number;
constructor(
readonly difficulty: Difficulty,
readonly sectionIds: Array<SectionId>,
readonly methodName: string,
readonly methodTime: number,
readonly runs: number,
readonly itemCounts: Map<Item, number>
) {
this.totalTime = runs * methodTime;
}
}
// TODO: Prefer methods that don't split pan arms over methods that do.
// For some reason this doesn't actually seem to be a problem, should probably investigate.
// TODO: Show expected value or probability per item per method.
// Can be useful when deciding which item to hunt first.
// TODO: boxes.
class HuntOptimizerStore {
2019-06-11 19:13:54 +08:00
@observable readonly wantedItems: IObservableArray<WantedItem> = observable.array();
@observable result?: OptimalResult;
2019-06-11 19:13:54 +08:00
constructor() {
this.initialize();
}
initialize = async () => {
try {
await this.loadFromLocalStorage();
autorun(this.storeInLocalStorage);
} catch (e) {
console.error(e);
}
2019-06-11 19:13:54 +08:00
}
loadFromLocalStorage = async () => {
const wantedItemsJson = localStorage.getItem(
`HuntOptimizerStore.wantedItems.${applicationStore.currentServer}`
);
2019-06-11 19:13:54 +08:00
if (wantedItemsJson) {
const items = await itemStore.items.current.promise;
const wi = JSON.parse(wantedItemsJson);
2019-06-11 19:13:54 +08:00
const wantedItems: WantedItem[] = [];
2019-06-11 19:13:54 +08:00
for (const { itemName, amount } of wi) {
const item = items.find(item => item.name === itemName);
2019-06-11 19:13:54 +08:00
if (item) {
wantedItems.push(new WantedItem(item, amount));
2019-06-11 19:13:54 +08:00
}
}
this.wantedItems.replace(wantedItems);
2019-06-11 19:13:54 +08:00
}
}
storeInLocalStorage = () => {
try {
localStorage.setItem(
`HuntOptimizerStore.wantedItems.${applicationStore.currentServer}`,
JSON.stringify(
this.wantedItems.map(({ item, amount }) => ({ itemName: item.name, amount }))
)
);
} catch (e) {
console.error(e);
}
}
optimize = async () => {
2019-06-06 08:24:21 +08:00
if (!this.wantedItems.length) {
this.result = undefined;
2019-06-06 08:24:21 +08:00
return;
}
// Initialize this set before awaiting data, so user changes don't affect this optimization
// run from this point on.
const wantedItems = new Set(this.wantedItems.filter(w => w.amount > 0).map(w => w.item));
const methods = await huntMethodStore.methods.current.promise;
const dropTable = await itemDropStore.enemyDrops.current.promise;
// Add a constraint per wanted item.
const constraints: { [itemName: string]: { min: number } } = {};
for (const wanted of this.wantedItems) {
constraints[wanted.item.name] = { min: wanted.amount };
}
// Add a variable to the LP model per method per difficulty per section ID.
// When a method with pan arms is encountered, two variables are added. One for the method
// with migiums and hidooms and one with pan arms.
// Each variable has a time property to minimize and a property per item with the number
// of enemies that drop the item multiplied by the corresponding drop rate as its value.
type Variable = {
time: number,
[itemName: string]: number,
}
const variables: { [methodName: string]: Variable } = {};
type VariableDetails = {
method: HuntMethod,
difficulty: Difficulty,
sectionId: SectionId,
splitPanArms: boolean,
}
const variableDetails: Map<string, VariableDetails> = new Map();
for (const method of methods) {
// Counts include rare enemies, so they are fractional.
const counts = new Map<NpcType, number>();
for (const enemy of method.enemies) {
const count = counts.get(enemy.type);
if (enemy.type.rareType == null) {
counts.set(enemy.type, (count || 0) + 1);
} else {
let rate, rareRate;
if (enemy.type.rareType === NpcType.Kondrieu) {
rate = 1 - KONDRIEU_PROB;
rareRate = KONDRIEU_PROB;
} else {
rate = 1 - RARE_ENEMY_PROB;
rareRate = RARE_ENEMY_PROB;
}
counts.set(enemy.type, (count || 0) + rate);
const rareCount = counts.get(enemy.type.rareType);
counts.set(enemy.type.rareType, (rareCount || 0) + rareRate);
}
}
// Create a secondary counts map if there are any pan arms that can be split into
// migiums and hidooms.
const countsList: Array<Map<NpcType, number>> = [counts];
const panArmsCount = counts.get(NpcType.PanArms);
if (panArmsCount) {
const splitCounts = new Map(counts);
splitCounts.delete(NpcType.PanArms);
splitCounts.set(NpcType.Migium, panArmsCount);
splitCounts.set(NpcType.Hidoom, panArmsCount);
countsList.push(splitCounts);
}
const panArms2Count = counts.get(NpcType.PanArms2);
if (panArms2Count) {
const splitCounts = new Map(counts);
splitCounts.delete(NpcType.PanArms2);
splitCounts.set(NpcType.Migium2, panArms2Count);
splitCounts.set(NpcType.Hidoom2, panArms2Count);
countsList.push(splitCounts);
}
for (let i = 0; i < countsList.length; i++) {
const counts = countsList[i];
const splitPanArms = i === 1;
for (const diff of Difficulties) {
for (const sectionId of SectionIds) {
// Will contain an entry per wanted item dropped by enemies in this method/
// difficulty/section ID combo.
const variable: Variable = {
time: method.time
};
// Only add the variable if the method provides at least 1 item we want.
let addVariable = false;
for (const [npcType, count] of counts.entries()) {
const drop = dropTable.getDrop(diff, sectionId, npcType);
if (drop && wantedItems.has(drop.item)) {
const value = variable[drop.item.name] || 0;
variable[drop.item.name] = value + count * drop.rate;
addVariable = true;
}
}
if (addVariable) {
const name = this.fullMethodName(
diff, sectionId, method, splitPanArms
);
variables[name] = variable;
variableDetails.set(name, {
method,
difficulty: diff,
sectionId,
splitPanArms
});
}
}
}
}
}
const result: {
feasible: boolean,
bounded: boolean,
result: number,
/**
* Value will always be a number if result is indexed with an actual method name.
*/
[method: string]: number | boolean
} = solver.Solve({
optimize: 'time',
opType: 'min',
constraints,
variables
});
if (!result.feasible) {
this.result = undefined;
return;
}
const optimalMethods: Array<OptimalMethod> = [];
2019-06-06 08:24:21 +08:00
// Loop over the entries in result, ignore standard properties that aren't variables.
for (const [variableName, runsOrOther] of Object.entries(result)) {
const details = variableDetails.get(variableName);
if (details) {
const { method, difficulty, sectionId, splitPanArms } = details;
const runs = runsOrOther as number;
const variable = variables[variableName];
const items = new Map<Item, number>();
for (const [itemName, expectedAmount] of Object.entries(variable)) {
for (const item of wantedItems) {
if (itemName === item.name) {
items.set(item, runs * expectedAmount);
break;
}
}
}
// Find all section IDs that provide the same items with the same expected amount.
// E.g. if you need a spread needle and a bringer's right arm, using either
// purplenum or yellowboze will give you the exact same probabilities.
const sectionIds: Array<SectionId> = [];
for (const sid of SectionIds) {
let matchFound = true;
if (sid !== sectionId) {
const v = variables[
this.fullMethodName(difficulty, sid, method, splitPanArms)
];
if (!v) {
matchFound = false;
} else {
for (const itemName of Object.keys(variable)) {
if (variable[itemName] !== v[itemName]) {
matchFound = false;
break;
}
}
}
}
if (matchFound) {
sectionIds.push(sid);
}
}
optimalMethods.push(new OptimalMethod(
difficulty,
sectionIds,
method.name + (splitPanArms ? ' (Split Pan Arms)' : ''),
method.time,
runs,
items
));
}
}
this.result = new OptimalResult(
[...wantedItems],
optimalMethods
);
}
private fullMethodName(
difficulty: Difficulty,
sectionId: SectionId,
method: HuntMethod,
splitPanArms: boolean
): string {
let name = `${difficulty}\t${sectionId}\t${method.name}`;
if (splitPanArms) name += ' (Split Pan Arms)';
return name;
}
}
export const huntOptimizerStore = new HuntOptimizerStore();