phantasmal-world/src/bin_data/parsing/ninja/index.ts

140 lines
4.3 KiB
TypeScript
Raw Normal View History

import {
BufferAttribute,
BufferGeometry,
Euler,
Matrix4,
Quaternion,
Vector3
} from 'three';
import { BufferCursor } from '../../BufferCursor';
import { parseNjModel, NjContext } from './nj';
import { parseXjModel, XjContext } from './xj';
// TODO:
// - deal with multiple NJCM chunks
// - deal with other types of chunks
export function parseNj(cursor: BufferCursor): BufferGeometry | undefined {
return parseNinja(cursor, 'nj');
}
export function parseXj(cursor: BufferCursor): BufferGeometry | undefined {
return parseNinja(cursor, 'xj');
}
type Format = 'nj' | 'xj';
type Context = NjContext | XjContext;
function parseNinja(cursor: BufferCursor, format: Format): BufferGeometry | undefined {
while (cursor.bytes_left) {
// Ninja uses a little endian variant of the IFF format.
// IFF files contain chunks preceded by an 8-byte header.
// The header consists of 4 ASCII characters for the "Type ID" and a 32-bit integer specifying the chunk size.
const iffTypeId = cursor.string_ascii(4, false, false);
const iffChunkSize = cursor.u32();
if (iffTypeId === 'NJCM') {
return parseNjcm(cursor.take(iffChunkSize), format);
} else {
cursor.seek(iffChunkSize);
}
}
}
function parseNjcm(cursor: BufferCursor, format: Format): BufferGeometry | undefined {
if (cursor.bytes_left) {
let context: Context;
if (format === 'nj') {
context = {
format,
positions: [],
normals: [],
cachedChunkOffsets: [],
vertices: []
};
} else {
context = {
format,
positions: [],
normals: [],
indices: []
};
}
parseSiblingObjects(cursor, new Matrix4(), context);
return createBufferGeometry(context);
}
}
function parseSiblingObjects(
cursor: BufferCursor,
parentMatrix: Matrix4,
context: Context
): void {
const evalFlags = cursor.u32();
const noTranslate = (evalFlags & 0b1) !== 0;
const noRotate = (evalFlags & 0b10) !== 0;
const noScale = (evalFlags & 0b100) !== 0;
const hidden = (evalFlags & 0b1000) !== 0;
const breakChildTrace = (evalFlags & 0b10000) !== 0;
const zxyRotationOrder = (evalFlags & 0b100000) !== 0;
const modelOffset = cursor.u32();
const posX = cursor.f32();
const posY = cursor.f32();
const posZ = cursor.f32();
const rotationX = cursor.i32() * (2 * Math.PI / 0xFFFF);
const rotationY = cursor.i32() * (2 * Math.PI / 0xFFFF);
const rotationZ = cursor.i32() * (2 * Math.PI / 0xFFFF);
const scaleX = cursor.f32();
const scaleY = cursor.f32();
const scaleZ = cursor.f32();
const childOffset = cursor.u32();
const siblingOffset = cursor.u32();
const rotation = new Euler(rotationX, rotationY, rotationZ, zxyRotationOrder ? 'ZXY' : 'ZYX');
const matrix = new Matrix4()
.compose(
noTranslate ? new Vector3() : new Vector3(posX, posY, posZ),
noRotate ? new Quaternion(0, 0, 0, 1) : new Quaternion().setFromEuler(rotation),
noScale ? new Vector3(1, 1, 1) : new Vector3(scaleX, scaleY, scaleZ)
)
.premultiply(parentMatrix);
if (modelOffset && !hidden) {
cursor.seek_start(modelOffset);
parseModel(cursor, matrix, context);
}
if (childOffset && !breakChildTrace) {
cursor.seek_start(childOffset);
parseSiblingObjects(cursor, matrix, context);
}
if (siblingOffset) {
cursor.seek_start(siblingOffset);
parseSiblingObjects(cursor, parentMatrix, context);
}
}
function createBufferGeometry(context: Context): BufferGeometry {
const geometry = new BufferGeometry();
geometry.addAttribute('position', new BufferAttribute(new Float32Array(context.positions), 3));
geometry.addAttribute('normal', new BufferAttribute(new Float32Array(context.normals), 3));
if ('indices' in context) {
geometry.setIndex(new BufferAttribute(new Uint16Array(context.indices), 1));
}
return geometry;
}
function parseModel(cursor: BufferCursor, matrix: Matrix4, context: Context): void {
if (context.format === 'nj') {
parseNjModel(cursor, matrix, context);
} else {
parseXjModel(cursor, matrix, context);
}
}