phantasmal-world/src/quest_editor/scripting/vm/index.ts

1082 lines
33 KiB
TypeScript
Raw Normal View History

import { Instruction, InstructionSegment, Segment, SegmentType } from "../instructions";
2019-10-03 23:28:48 +08:00
import {
OP_ADD,
OP_ADDI,
OP_AND,
OP_ANDI,
OP_ARG_PUSHB,
OP_ARG_PUSHL,
OP_ARG_PUSHR,
OP_ARG_PUSHW,
OP_ARG_PUSHA,
OP_ARG_PUSHS,
OP_CALL,
OP_CLEAR,
2019-10-03 23:28:48 +08:00
OP_DIV,
OP_DIVI,
OP_EXIT,
2019-10-03 23:28:48 +08:00
OP_FADD,
OP_FADDI,
OP_FDIV,
OP_FDIVI,
OP_FMUL,
OP_FMULI,
OP_FSUB,
OP_FSUBI,
OP_JMP,
OP_LET,
OP_LETB,
OP_LETI,
OP_LETW,
2019-10-03 23:28:48 +08:00
OP_MOD,
OP_MODI,
OP_MUL,
OP_MULI,
OP_NOP,
2019-10-03 23:28:48 +08:00
OP_OR,
OP_ORI,
OP_RET,
OP_REV,
OP_SET,
2019-10-03 23:28:48 +08:00
OP_SHIFT_LEFT,
OP_SHIFT_RIGHT,
OP_SUB,
OP_SUBI,
2019-10-03 23:28:48 +08:00
OP_SYNC,
OP_THREAD,
OP_XOR,
OP_XORI,
OP_JMP_E,
OP_JMPI_E,
OP_JMP_ON,
OP_JMP_OFF,
OP_JMP_NE,
OP_JMPI_NE,
OP_UJMP_G,
OP_UJMPI_G,
OP_JMP_G,
OP_JMPI_G,
OP_UJMP_L,
OP_UJMPI_L,
OP_JMP_L,
OP_JMPI_L,
OP_UJMP_GE,
OP_UJMPI_GE,
OP_JMP_GE,
OP_JMPI_GE,
OP_UJMP_LE,
OP_UJMPI_LE,
OP_JMP_LE,
OP_JMPI_LE,
OP_STACK_POP,
OP_STACK_PUSH,
OP_STACK_PUSHM,
OP_STACK_POPM,
Param,
Kind,
} from "../opcodes";
import Logger from "js-logger";
import { ArrayBufferCursor } from "../../../core/data_formats/cursor/ArrayBufferCursor";
import { Endianness } from "../../../core/data_formats/Endianness";
const logger = Logger.get("quest_editor/scripting/vm");
const REGISTERS_BASE_ADDRESS = 0x00a954b0;
const REGISTER_COUNT = 256;
const REGISTER_SIZE = 4;
const VARIABLE_STACK_LENGTH = 16; // TODO: verify this value
const ARG_STACK_SLOT_SIZE = 4;
const ARG_STACK_LENGTH = 8;
const STRING_ARG_STORE_ADDRESS = 0x00a92700;
const STRING_ARG_STORE_SIZE = 1024; // TODO: verify this value
export enum ExecutionResult {
Ok,
WaitingVsync,
Halted,
}
type BinaryNumericOperation = (a: number, b: number) => number;
2019-10-03 23:28:48 +08:00
const numeric_ops: Record<
"add" | "sub" | "mul" | "div" | "idiv" | "mod" | "and" | "or" | "xor" | "shl" | "shr",
BinaryNumericOperation
> = {
add: (a, b) => a + b,
sub: (a, b) => a - b,
mul: (a, b) => a * b,
div: (a, b) => a / b,
idiv: (a, b) => Math.floor(a / b),
mod: (a, b) => a % b,
and: (a, b) => a & b,
or: (a, b) => a | b,
xor: (a, b) => a ^ b,
shl: (a, b) => a << b,
shr: (a, b) => a >>> b,
};
type ComparisonOperation = (a: number, b: number) => boolean;
2019-10-04 19:21:51 +08:00
const comparison_ops: Record<"eq" | "neq" | "gt" | "lt" | "gte" | "lte", ComparisonOperation> = {
eq: (a, b) => a === b,
neq: (a, b) => a !== b,
gt: (a, b) => a > b,
lt: (a, b) => a < b,
gte: (a, b) => a >= b,
lte: (a, b) => a <= b,
};
/**
* Short-circuiting fold.
*/
function andfold<T, A>(fn: (acc: A, cur: T) => A | undefined, init: A, lst: T[]): A | undefined {
let acc = init;
for (const item of lst) {
const new_val = fn(acc, item);
if (new_val === undefined) {
return undefined;
} else {
acc = new_val;
}
}
2019-10-04 19:21:51 +08:00
return acc;
}
/**
* Short-circuiting reduce.
*/
function andreduce<T>(fn: (acc: T, cur: T) => T | undefined, lst: T[]): T | undefined {
return andfold(fn, lst[0], lst.slice(1));
}
/**
* Applies the given arguments to the given function.
* Returns the second argument if the function returns a truthy value, else undefined.
*/
function andsecond<T>(fn: (first: T, second: T) => any, first: T, second: T): T | undefined {
if (fn(first, second)) {
return second;
}
return undefined;
}
function rest<T>(lst: T[]): T[] {
return lst.slice(1);
}
type Range = [number, number];
function ranges_overlap(a: Range, b: Range): boolean {
return a[0] <= b[1] && b[0] <= a[1];
}
class VirtualMachineMemoryBuffer extends ArrayBufferCursor {
/**
* The memory this buffer belongs to.
*/
public readonly memory: VirtualMachineMemory;
/**
* The memory address of this buffer.
*/
public readonly address: number;
constructor(memory: VirtualMachineMemory, address: number, size: number) {
super(new ArrayBuffer(size), Endianness.Little);
this.memory = memory;
this.address = address;
}
public get_offset(byte_offset: number): VirtualMachineMemorySlot | undefined {
return this.memory.get(this.address + byte_offset);
}
public free(): void {
this.memory.free(this.address);
}
public zero(): void {
new Uint32Array(this.backing_buffer).fill(0);
}
}
/**
* Represents a single location in memory.
*/
class VirtualMachineMemorySlot {
/**
* The memory this slot belongs to.
*/
public readonly memory: VirtualMachineMemory;
/**
* The memory address this slots represents.
*/
public readonly address: number;
/**
* The allocated buffer this slot is a part of.
*/
public readonly buffer: VirtualMachineMemoryBuffer;
/**
* The offset that this slot represents in the buffer.
*/
public readonly byte_offset: number;
constructor(
memory: VirtualMachineMemory,
address: number,
buffer: VirtualMachineMemoryBuffer,
byte_offset: number,
) {
this.memory = memory;
this.address = address;
this.buffer = buffer;
this.byte_offset = byte_offset;
}
}
/**
* Maps memory addresses to buffers.
*/
class VirtualMachineMemory {
private allocated_ranges: Range[] = [];
private ranges_sorted: boolean = true;
private memory: Map<number, VirtualMachineMemorySlot> = new Map();
private sort_ranges(): void {
this.allocated_ranges.sort((a, b) => a[0] - b[0]);
this.ranges_sorted = true;
}
/**
* Would a buffer of the given size fit at the given address?
*/
private will_fit(address: number, size: number): boolean {
const fit_range: Range = [address, address + size - 1];
if (!this.ranges_sorted) {
this.sort_ranges();
}
// check if it would overlap any already allocated space
for (const alloc_range of this.allocated_ranges) {
if (ranges_overlap(alloc_range, fit_range)) {
return false;
}
}
return true;
}
/**
* Returns an address where a buffer of the given size would fit.
*/
private find_free_space(size: number): number {
let address = 0;
// nothing yet allocated, we can place it wherever
if (this.allocated_ranges.length < 1) {
return address;
}
if (!this.ranges_sorted) {
this.sort_ranges();
}
// check if buffer could fit in between allocated buffers
for (const alloc_range of this.allocated_ranges) {
if (!ranges_overlap(alloc_range, [address, address + size - 1])) {
return address;
}
address = alloc_range[1] + 1;
}
// just place it at the end
return address;
}
/**
* Allocate a buffer of the given size at the given address.
* If the address is omitted a suitable location is chosen.
* @returns The allocated buffer.
*/
public allocate(size: number, address?: number): VirtualMachineMemoryBuffer {
if (size <= 0) {
throw new Error("Allocation failed: The size of the buffer must be greater than 0");
}
// check if given address is good or find an address if none was given
if (address === undefined) {
address = this.find_free_space(size);
} else {
if (!this.will_fit(address, size)) {
throw new Error(
"Allocation failed: Cannot fit a buffer of the given size at the given address",
);
}
}
// save the range of allocated memory
this.allocated_ranges.push([address, address + size - 1]);
this.ranges_sorted = false;
// the actual buffer
const buf = new VirtualMachineMemoryBuffer(this, address, size);
// set addresses to correct buffer offsets
for (let offset = 0; offset < size; offset++) {
this.memory.set(
address + offset,
new VirtualMachineMemorySlot(this, address, buf, offset),
);
}
return buf;
}
/**
* Free the memory allocated for the buffer at the given address.
*/
public free(address: number): void {
// check if address is a valid allocated buffer
let range: Range | undefined = undefined;
let range_idx = -1;
for (let i = 0; i < this.allocated_ranges.length; i++) {
const cur = this.allocated_ranges[i];
if (cur[0] === address) {
range = cur;
range_idx = i;
break;
}
}
if (range === undefined) {
throw new Error("Free failed: Given address is not the start of an allocated buffer");
}
const [alloc_start, alloc_end] = range;
// remove addresses
for (let addr = alloc_start; addr <= alloc_end; addr++) {
this.memory.delete(addr);
}
// remove range
this.allocated_ranges.splice(range_idx, 1);
}
/**
* Gets the memory at the given address. Returns undefined if
* there is nothing allocated at the given address.
*/
public get(address: number): VirtualMachineMemorySlot | undefined {
if (this.memory.has(address)) {
return this.memory.get(address)!;
}
return undefined;
}
}
export class VirtualMachine {
private memory = new VirtualMachineMemory();
private registers = this.memory.allocate(
REGISTER_SIZE * REGISTER_COUNT,
REGISTERS_BASE_ADDRESS,
)!;
private string_arg_store = this.memory.allocate(
STRING_ARG_STORE_SIZE,
STRING_ARG_STORE_ADDRESS,
);
private object_code: Segment[] = [];
private label_to_seg_idx: Map<number, number> = new Map();
private thread: Thread[] = [];
private thread_idx = 0;
/**
* Halts and resets the VM, then loads new object code.
*/
load_object_code(object_code: Segment[]): void {
this.halt();
this.clear_registers();
this.object_code = object_code;
this.label_to_seg_idx.clear();
let i = 0;
for (const segment of this.object_code) {
for (const label of segment.labels) {
this.label_to_seg_idx.set(label, i);
}
i++;
}
}
/**
* Schedules concurrent execution of the code at the given label.
*/
start_thread(label: number): void {
const seg_idx = this.label_to_seg_idx.get(label);
const segment = seg_idx == undefined ? undefined : this.object_code[seg_idx];
if (segment == undefined) {
throw new Error(`Unknown label ${label}.`);
}
if (segment.type !== SegmentType.Instructions) {
throw new Error(
`Label ${label} points to a ${SegmentType[segment.type]} segment, expecting ${
SegmentType[SegmentType.Instructions]
}.`,
);
}
this.thread.push(
new Thread(
new ExecutionLocation(seg_idx!, 0),
this.memory.allocate(ARG_STACK_SLOT_SIZE * ARG_STACK_LENGTH),
true,
),
);
}
private dispose_thread(thread_idx: number): void {
this.thread[thread_idx].dispose();
this.thread.splice(thread_idx, 1);
}
/**
* Executes the next instruction if one is scheduled.
*
* @returns true if an instruction was executed, false otherwise.
*/
execute(): ExecutionResult {
if (this.thread.length === 0) return ExecutionResult.Halted;
if (this.thread_idx >= this.thread.length) return ExecutionResult.WaitingVsync;
const exec = this.thread[this.thread_idx];
const inst = this.get_next_instruction_from_thread(exec);
const arg_vals = inst.args.map(arg => arg.value);
// eslint-disable-next-line
const [arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7] = arg_vals;
// helper for conditional jump opcodes
2019-10-04 19:21:51 +08:00
const conditional_jump_args: (
cond: ComparisonOperation,
) => [Thread, number, ComparisonOperation, number, number] = cond => [
exec,
arg2,
cond,
arg0,
arg1,
];
switch (inst.opcode.code) {
case OP_NOP.code:
break;
case OP_RET.code:
this.pop_call_stack(this.thread_idx, exec);
break;
case OP_SYNC.code:
this.thread_idx++;
break;
case OP_EXIT.code:
this.halt();
break;
case OP_THREAD.code:
this.start_thread(arg0);
break;
case OP_LET.code:
this.set_sint(arg0, this.get_sint(arg1));
break;
case OP_LETI.code:
this.set_sint(arg0, arg1);
break;
case OP_LETB.code:
case OP_LETW.code:
this.set_uint(arg0, arg1);
break;
case OP_SET.code:
this.set_sint(arg0, 1);
break;
case OP_CLEAR.code:
this.set_sint(arg0, 0);
break;
case OP_REV.code:
this.set_sint(arg0, this.get_sint(arg0) === 0 ? 1 : 0);
break;
case OP_CALL.code:
this.push_call_stack(exec, arg0);
break;
case OP_JMP.code:
this.jump_to_label(exec, arg0);
break;
case OP_ARG_PUSHR.code:
// deref given register ref
exec.push_arg(this.get_sint(arg0), Kind.DWord);
break;
case OP_ARG_PUSHL.code:
exec.push_arg(inst.args[0].value, Kind.DWord);
break;
case OP_ARG_PUSHB.code:
exec.push_arg(inst.args[0].value, Kind.Byte);
break;
case OP_ARG_PUSHW.code:
exec.push_arg(inst.args[0].value, Kind.Word);
2019-09-16 04:20:49 +08:00
break;
case OP_ARG_PUSHA.code:
// push address of register
exec.push_arg(this.get_register_address(inst.args[0].value), Kind.DWord);
break;
case OP_ARG_PUSHS.code:
{
// store string and push its address
const string_arg = arg0 as string;
this.string_arg_store.write_string_utf16_at(
0,
string_arg,
string_arg.length * 2,
);
exec.push_arg(this.string_arg_store.address, Kind.String);
}
break;
// arithmetic operations
case OP_ADD.code:
case OP_FADD.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.add);
break;
case OP_ADDI.code:
case OP_FADDI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.add);
break;
case OP_SUB.code:
case OP_FSUB.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.sub);
break;
case OP_SUBI.code:
case OP_FSUBI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.sub);
break;
case OP_MUL.code:
case OP_FMUL.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.mul);
break;
case OP_MULI.code:
case OP_FMULI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.mul);
break;
case OP_DIV.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.idiv);
break;
case OP_FDIV.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.div);
break;
case OP_DIVI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.idiv);
break;
case OP_FDIVI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.div);
break;
case OP_MOD.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.mod);
break;
case OP_MODI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.mod);
break;
// bit operations
case OP_AND.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.and);
break;
case OP_ANDI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.and);
break;
case OP_OR.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.or);
break;
case OP_ORI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.or);
break;
case OP_XOR.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.xor);
break;
case OP_XORI.code:
this.do_numeric_op_with_literal(arg0, arg1, numeric_ops.xor);
break;
// shift operations
case OP_SHIFT_LEFT.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.shl);
break;
case OP_SHIFT_RIGHT.code:
this.do_numeric_op_with_register(arg0, arg1, numeric_ops.shr);
break;
// conditional jumps
case OP_JMP_ON.code:
// all eq 1?
2019-10-04 19:21:51 +08:00
this.conditional_jump(
exec,
arg0,
comparison_ops.eq,
1,
...rest(arg_vals).map(reg => this.get_sint(reg)),
);
break;
case OP_JMP_OFF.code:
// all eq 0?
2019-10-04 19:21:51 +08:00
this.conditional_jump(
exec,
arg0,
comparison_ops.eq,
0,
...rest(arg_vals).map(reg => this.get_sint(reg)),
);
break;
case OP_JMP_E.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.eq),
);
break;
case OP_JMPI_E.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.eq),
);
break;
case OP_JMP_NE.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.neq),
);
break;
case OP_JMPI_NE.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.neq),
);
break;
case OP_UJMP_G.code:
2019-10-04 19:21:51 +08:00
this.unsigned_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.gt),
);
break;
case OP_UJMPI_G.code:
2019-10-04 19:21:51 +08:00
this.unsigned_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.gt),
);
break;
case OP_JMP_G.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.gt),
);
break;
case OP_JMPI_G.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.gt),
);
break;
case OP_UJMP_L.code:
2019-10-04 19:21:51 +08:00
this.unsigned_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.lt),
);
break;
case OP_UJMPI_L.code:
2019-10-04 19:21:51 +08:00
this.unsigned_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.lt),
);
break;
case OP_JMP_L.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.lt),
);
break;
case OP_JMPI_L.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.lt),
);
break;
case OP_UJMP_GE.code:
2019-10-04 19:21:51 +08:00
this.unsigned_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.gte),
);
break;
case OP_UJMPI_GE.code:
2019-10-04 19:21:51 +08:00
this.unsigned_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.gte),
);
break;
case OP_JMP_GE.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.gte),
);
break;
case OP_JMPI_GE.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.gte),
);
break;
case OP_UJMP_LE.code:
2019-10-04 19:21:51 +08:00
this.unsigned_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.lte),
);
break;
case OP_UJMPI_LE.code:
2019-10-04 19:21:51 +08:00
this.unsigned_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.lte),
);
break;
case OP_JMP_LE.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_register(
...conditional_jump_args(comparison_ops.lte),
);
break;
case OP_JMPI_LE.code:
2019-10-04 19:21:51 +08:00
this.signed_conditional_jump_with_literal(
...conditional_jump_args(comparison_ops.lte),
);
break;
// variable stack operations
case OP_STACK_PUSH.code:
this.push_variable_stack(exec, arg0, 1);
break;
case OP_STACK_POP.code:
this.pop_variable_stack(exec, arg0, 1);
break;
case OP_STACK_PUSHM.code:
this.push_variable_stack(exec, arg0, arg1);
break;
case OP_STACK_POPM.code:
this.pop_variable_stack(exec, arg0, arg1);
break;
default:
throw new Error(`Unsupported instruction: ${inst.opcode.mnemonic}.`);
}
// advance instruction "pointer"
if (exec.call_stack.length) {
const top = exec.call_stack_top();
const segment = this.object_code[top.seg_idx] as InstructionSegment;
// move to next instruction
if (++top.inst_idx >= segment.instructions.length) {
// segment ended, move to next segment
if (++top.seg_idx >= this.object_code.length) {
// eof
this.dispose_thread(this.thread_idx);
} else {
top.inst_idx = 0;
}
}
}
if (this.thread.length === 0) return ExecutionResult.Halted;
if (this.thread_idx >= this.thread.length) return ExecutionResult.WaitingVsync;
return ExecutionResult.Ok;
}
/**
* Signal to the VM that a vsync has happened.
*/
vsync(): void {
if (this.thread_idx >= this.thread.length) {
this.thread_idx = 0;
}
}
/**
* Halts execution of all threads.
*/
halt(): void {
this.thread = [];
this.thread_idx = 0;
}
private get_sint(reg: number): number {
return this.registers.i32_at(REGISTER_SIZE * reg);
}
private set_sint(reg: number, value: number): void {
this.registers.write_i32_at(REGISTER_SIZE * reg, value);
}
private get_uint(reg: number): number {
return this.registers.u32_at(REGISTER_SIZE * reg);
}
private set_uint(reg: number, value: number): void {
this.registers.write_u32_at(REGISTER_SIZE * reg, value);
}
2019-10-03 23:28:48 +08:00
private do_numeric_op_with_register(
reg1: number,
reg2: number,
op: BinaryNumericOperation,
): void {
this.do_numeric_op_with_literal(reg1, this.get_sint(reg2), op);
}
2019-10-03 23:28:48 +08:00
private do_numeric_op_with_literal(
reg: number,
literal: number,
op: BinaryNumericOperation,
): void {
this.set_sint(reg, op(this.get_sint(reg), literal));
}
private push_call_stack(exec: Thread, label: number): void {
const seg_idx = this.label_to_seg_idx.get(label);
if (seg_idx == undefined) {
logger.warn(`Invalid label called: ${label}.`);
} else {
const segment = this.object_code[seg_idx];
if (segment.type !== SegmentType.Instructions) {
logger.warn(
`Label ${label} points to a ${SegmentType[segment.type]} segment, expecting ${
SegmentType[SegmentType.Instructions]
}.`,
);
} else {
exec.call_stack.push(new ExecutionLocation(seg_idx, -1));
}
}
}
private pop_call_stack(idx: number, exec: Thread): void {
exec.call_stack.pop();
if (exec.call_stack.length >= 1) {
const top = exec.call_stack_top();
const segment = this.object_code[top.seg_idx];
if (!segment || segment.type !== SegmentType.Instructions) {
throw new Error(`Invalid segment index ${top.seg_idx}.`);
}
} else {
// popped off the last return address
// which means this is the end of the function this thread was started on
// which means this is the end of this thread
this.thread.splice(idx, 1);
}
}
2019-10-03 23:28:48 +08:00
private jump_to_label(exec: Thread, label: number): void {
const top = exec.call_stack_top();
const seg_idx = this.label_to_seg_idx.get(label);
if (seg_idx == undefined) {
logger.warn(`Invalid jump label: ${label}.`);
} else {
top.seg_idx = seg_idx;
top.inst_idx = -1;
}
}
private signed_conditional_jump_with_register(
exec: Thread,
label: number,
condition: ComparisonOperation,
reg1: number,
reg2: number,
): void {
this.conditional_jump(exec, label, condition, this.get_sint(reg1), this.get_sint(reg2));
}
private signed_conditional_jump_with_literal(
exec: Thread,
label: number,
condition: ComparisonOperation,
reg: number,
literal: number,
): void {
this.conditional_jump(exec, label, condition, this.get_sint(reg), literal);
}
private unsigned_conditional_jump_with_register(
exec: Thread,
label: number,
condition: ComparisonOperation,
reg1: number,
reg2: number,
): void {
this.conditional_jump(exec, label, condition, this.get_uint(reg1), this.get_uint(reg2));
}
private unsigned_conditional_jump_with_literal(
exec: Thread,
label: number,
condition: ComparisonOperation,
reg: number,
literal: number,
): void {
this.conditional_jump(exec, label, condition, this.get_uint(reg), literal);
}
private conditional_jump(
exec: Thread,
label: number,
condition: ComparisonOperation,
...vals: number[]
): void {
2019-10-04 19:21:51 +08:00
const chain_cmp = andsecond.bind<
null,
ComparisonOperation,
Parameters<ComparisonOperation>,
any
>(null, condition);
if (andreduce(chain_cmp, vals) !== undefined) {
this.jump_to_label(exec, label);
}
}
private push_variable_stack(exec: Thread, base_reg: number, num_push: number): void {
const end = base_reg + num_push;
if (end > REGISTER_COUNT) {
throw new Error("Variable stack: Invalid register");
}
if (exec.variable_stack.length + num_push > VARIABLE_STACK_LENGTH) {
throw new Error("Variable stack: Stack overflow");
}
for (let r = base_reg; r < end; r++) {
exec.variable_stack.push(this.get_uint(r));
}
}
private pop_variable_stack(exec: Thread, base_reg: number, num_pop: number): void {
const end = base_reg + num_pop;
if (end > REGISTER_COUNT) {
throw new Error("Variable stack: Invalid register");
}
if (exec.variable_stack.length < num_pop) {
throw new Error("Variable stack: Stack underflow");
}
for (let r = end - 1; r >= base_reg; r--) {
this.set_uint(r, exec.variable_stack.pop()!);
}
}
private get_next_instruction_from_thread(exec: Thread): Instruction {
if (exec.call_stack.length) {
const top = exec.call_stack_top();
const segment = this.object_code[top.seg_idx];
if (!segment || segment.type !== SegmentType.Instructions) {
throw new Error(`Invalid segment index ${top.seg_idx}.`);
}
const inst = segment.instructions[top.inst_idx];
if (!inst) {
throw new Error(
`Invalid instruction index ${top.inst_idx} for segment ${top.seg_idx}.`,
);
}
return inst;
} else {
throw new Error(`Call stack is empty.`);
}
}
private clear_registers(): void {
this.registers.zero();
}
private get_register_address(reg: number): number {
return this.registers.address + reg * REGISTER_SIZE;
}
}
class ExecutionLocation {
constructor(public seg_idx: number, public inst_idx: number) {}
}
type ArgStackTypeList = [Kind, Kind, Kind, Kind, Kind, Kind, Kind, Kind];
class Thread {
/**
* Call stack. The top element describes the instruction about to be executed.
*/
public call_stack: ExecutionLocation[] = [];
private arg_stack: VirtualMachineMemoryBuffer;
private arg_stack_counter: number = 0;
private arg_stack_types: ArgStackTypeList = Array(ARG_STACK_LENGTH).fill(
Kind.Any,
) as ArgStackTypeList;
public variable_stack: number[] = [];
/**
* Global or floor-local?
*/
public global: boolean;
constructor(next: ExecutionLocation, arg_stack: VirtualMachineMemoryBuffer, global: boolean) {
this.call_stack = [next];
this.global = global;
this.arg_stack = arg_stack;
}
public call_stack_top(): ExecutionLocation {
return this.call_stack[this.call_stack.length - 1];
}
public push_arg(data: number, type: Kind): void {
if (this.arg_stack_counter >= ARG_STACK_LENGTH) {
throw new Error("Argument stack: Stack overflow");
}
this.arg_stack.write_u32_at(this.arg_stack_counter * ARG_STACK_SLOT_SIZE, data);
this.arg_stack_types[this.arg_stack_counter] = type;
this.arg_stack_counter++;
}
public fetch_args(params: readonly Param[]): number[] {
const args: number[] = [];
if (params.length !== this.arg_stack_counter) {
logger.warn("Argument stack: Argument count mismatch");
}
for (let i = 0; i < params.length; i++) {
const param = params[i];
if (param.type.kind !== this.arg_stack_types[i]) {
logger.warn("Argument stack: Argument type mismatch");
}
switch (param.type.kind) {
case Kind.Byte:
args.push(this.arg_stack.u8_at(i * ARG_STACK_SLOT_SIZE));
break;
case Kind.Word:
args.push(this.arg_stack.u16_at(i * ARG_STACK_SLOT_SIZE));
break;
case Kind.DWord:
case Kind.String:
args.push(this.arg_stack.u32_at(i * ARG_STACK_SLOT_SIZE));
break;
default:
throw new Error(`Unhandled param kind: Kind.${Kind[param.type.kind]}`);
}
}
this.arg_stack_counter = 0;
return args;
}
public dispose(): void {
this.arg_stack.free();
}
}