""" MIT License Copyright (c) 2020 Benjamin Collins (kion @ dashgl.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import sys import struct from PowerVR import PowerVR from NinjaTexture import NinjaTexture from NinjaMaterial import NinjaMaterial from NinjaVertex import NinjaVertex from NinjaFace import NinjaFace from NinjaBone import NinjaBone from NinjaMotion import NinjaMotion class NinjaModel: def __init__(self, model_name, tex_name = ''): self.debug = False self.hasMesh = [] # File Information self.model_name = model_name self.model_path = 'input/' + model_name self.file = open(self.model_path, 'rb') self.length = os.path.getsize(self.model_path) self.tex_name = tex_name self.tex_path = 'input/' + tex_name # Textures self.mat_list = [] self.tex_list = [] self.anim_list = [] # Bone List self.bones = [] #Vertex List self.index_lookup = [] self.vertex_list = [] self.face_list = [] self.strip_count = 0; return None def parse(self): self.parseTexture() self.parseModel() return None def parseTexture(self): pvm = PowerVR(self.tex_name) self.tex_list = pvm.parse() return None def parseModel(self): while self.file.tell() < self.length: bytes = self.file.read(4) if(bytes == b'NJTL') : bytes = self.file.read(4) length = struct.unpack('I', bytes)[0] pos = self.file.tell() + length self.readNjtl() self.file.seek(pos, 0) elif (bytes == b'NJCM') : bytes = self.file.read(4) length = struct.unpack('I', bytes)[0] pos = self.file.tell() + length self.pof = self.file.tell() self.readNjcm(None) self.file.seek(pos, 0) elif (bytes == b'NMDM') : bytes = self.file.read(4) length = struct.unpack('I', bytes)[0] pos = self.file.tell() + length self.pof = self.file.tell() self.readNmdm() self.file.seek(pos, 0) print(self.hasMesh) self.file.close() return None def readNjtl(self): pof = self.file.tell() bytes = self.file.read(8) n = struct.unpack('II', bytes) str_ofs = [] self.file.seek(n[0] + pof, 0) for i in range(0, n[1]): bytes = self.file.read(12) m = struct.unpack('III', bytes) str_ofs.append(m[0] + pof) for ofs in str_ofs: name = '' self.file.seek(ofs, 0) while 1: ch = self.file.read(1) if(ch == b'\0'): break name += ch.decode() return None def readNjcm(self, parentBone): bytes = self.file.read(52) b = struct.unpack('IIfffiiifffII', bytes) flags = b[0] model_ofs = b[1] c = 2 * 3.141592 / 0xFFFF; pos = ( b[2], b[3], b[4] ) rot = ( b[5] * c, b[6] * c, b[7] *c) scl = ( b[8], b[9], b[10] ) child_ofs = b[11] sibling_ofs = b[12] self.bone = NinjaBone() num = len(self.bones) self.bone.setName(num) self.bones.append(self.bone) if self.debug: print("Reading bone: %s" % self.bone.name) if ( (flags & 0x04) == 0): self.bone.setScale(scl) if self.debug: print("Setting Scale: %s", scl) if ( (flags & 0x02) == 0): zxy_set = flags & 0x20 self.bone.setRotation(rot) if self.debug: print("Setting Rotation: ", rot) if ( (flags & 0x01) == 0): self.bone.setPosition(pos) if self.debug: print("Setting Position: ", pos) if parentBone: parentBone.add(self.bone) if model_ofs: self.hasMesh.append(self.bone.index) if self.debug: print("Reading Mesh @ 0x%08x" % self.file.tell()) self.file.seek(model_ofs + self.pof, 0) self.readModel() if child_ofs: self.file.seek(child_ofs + self.pof, 0) self.readNjcm(self.bone) if sibling_ofs: self.file.seek(sibling_ofs + self.pof, 0) self.readNjcm(parentBone) return None def readModel(self): bytes = self.file.read(24) m = struct.unpack('IIffff', bytes) vertex_ofs = m[0] chunk_ofs = m[1] center = (m[2], m[3], m[4]) radius = m[5] if vertex_ofs: self.file.seek(vertex_ofs + self.pof, 0) self.readVertexList() if chunk_ofs: self.file.seek(chunk_ofs + self.pof, 0) self.readChunkList() return None def readVertexList(self): bytes = self.file.read(8) c = struct.unpack('BBHHH', bytes) chunk_head = c[0] chunk_flag = c[1] chunk_len = c[2] vertex_ofs = c[3] vertex_count = c[4] readColor = False readNormal = False if chunk_head == 0x23: readColor = True elif chunk_head == 0x29: readNormal = True else: print("ERROR!!! NEW VERTEX TYPE!!!!") print("New Vertex Type: 0x%02x" % chunk_head) if self.debug: print("--- Reading vertex list ---") print("Vertex Count: %d" % vertex_count) print("Vertex Offset: %d" % vertex_ofs) for i in range(vertex_count): vertex = NinjaVertex() # Position bytes = self.file.read(12) v = struct.unpack('fff', bytes) pos = [ v[0], v[1], v[2] ] pos = self.bone.apply(pos) vertex.setPosition( pos[0], pos[1], pos[2] ) # Normal if readNormal: bytes = self.file.read(12) v = struct.unpack('fff', bytes) norm = [ v[0], v[1], v[2] ] norm = self.bone.applyNorm(norm) vertex.setNormal( norm[0], norm[1], norm[2] ) # Vertex Color if readColor: bytes = self.file.read(4) v = struct.unpack('BBBB', bytes) r = v[0] b = v[1] g = v[2] a = v[3] vertex.setColor(r, g, b, a) vertex.setSkinWeight(0, self.bone.index, 1.0) while len(self.index_lookup) < vertex_ofs + 1: self.index_lookup.append(None) self.index_lookup[vertex_ofs] = len(self.vertex_list) vertex_ofs += 1 self.vertex_list.append(vertex) pos = self.file.tell() bytes = self.file.read(2) c = struct.unpack('BB', bytes) chunk_head = c[0] chunk_flag = c[1] if chunk_head != 255: print("ERROR ANOTHER VERTEX LIST DETECTED") return None def readChunkList(self): if self.debug: print("--- Reading Chunks @ 0x%08x ---" % self.file.tell()) while 1: bytes = self.file.read(2) c = struct.unpack('BB', bytes) chunk_head = c[0] chunk_flag = c[1] if chunk_head == 255: if self.debug: print("End Chunk Found") break elif chunk_head == 0: if self.debug: print("Null Chunk Found") continue elif chunk_head >= 1 and chunk_head <= 5: if self.debug: print("Bits Chunk Found") if chunk_head == 1: print("Blend Alpha Adjust!!") elif chunk_head == 2: print("Mipmap adjust") elif chunk_head == 3: print("Specular exponent") elif chunk_head == 4: print("Save offset!!!") elif chunk_head == 5: print("Jumpt to offset!!!") elif chunk_head >= 17 and chunk_head <= 23: if self.debug: print("Material Chunk Found @ 0x%08x" % self.file.tell()) bytes = self.file.read(2) short_len = struct.unpack('H', bytes) self.material = NinjaMaterial() dst_alpha = chunk_flag & 0x07 src_alpha = chunk_flag >> 3 if chunk_head & 0x01: bytes = self.file.read(4) c = struct.unpack('BBBB', bytes) b = c[0] / 255.0 g = c[1] / 255.0 r = c[2] / 255.0 a = c[3] / 255.0 self.material.setDiffuseColor(r, g, b, a) if chunk_head & 0x02: bytes = self.file.read(4) c = struct.unpack('BBBB', bytes) b = c[0] / 255.0, g = c[1] / 255.0, r = c[2] / 255.0, a = c[3] / 255.0 if chunk_head & 0x04: bytes = self.file.read(4) c = struct.unpack('BBBB', bytes) b = c[0] / 255.0, g = c[1] / 255.0, r = c[2] / 255.0, coef = c[3] / 255.0 elif chunk_head >= 8 and chunk_head <= 9: if self.debug: print("Texture Chunk Found @ 0x%08x" % self.file.tell()) bytes = self.file.read(2) chunk_body = struct.unpack('H', bytes)[0] mip_depth = chunk_flag & 0x07 clamp_u = chunk_flag & 0x08 clamp_v = chunk_flag & 0x10 flip_u = chunk_flag & 0x20 flip_v = chunk_flag & 0x40 tex_id = chunk_body & 0x1fff super_sample = chunk_body >> 13 & 0x01 filter_sample = chunk_body >> 14 & 0x03 self.material = self.material.clone() self.material.setTexIndex(tex_id) elif chunk_head >= 64 and chunk_head <= 66: if self.debug: print("Strip Chunk Found @ 0x%08x" % self.file.tell()) bytes = self.file.read(2) h = struct.unpack('H', bytes) chunk_len = h[0] * 2 snap_to = self.file.tell() + chunk_len bytes = self.file.read(2) h = struct.unpack('H', bytes) chunk_body = h[0] if self.debug: print("Strip Length (bytes): 0x%04x" % chunk_len) print("Expected End: 0x%08x" % (self.file.tell() + chunk_len)) mat_index = -1 for i in range(len(self.mat_list)): if self.material != self.mat_list[i]: continue mat_index = i break if mat_index == -1: mat_index = len(self.mat_list) self.material.setIndex(len(self.mat_list)) self.mat_list.append(self.material) ignore_light = chunk_flag & 0x01 ignore_specular = chunk_flag & 0x02 ignore_ambient = chunk_flag & 0x04 use_alpha = chunk_flag & 0x08 double_side = chunk_flag & 0x10 flat_shading = chunk_flag & 0x20 environment_mapping = chunk_flag & 0x20 strip_count = chunk_body & 0x3fff; user_offset = chunk_body >> 14 if self.debug: print("Strip Count: %d" % strip_count) print("User Offset: %d" % user_offset) for i in range (strip_count): # { bytes = self.file.read(2) strip_len = struct.unpack('h', bytes)[0] if self.debug: print("Strip length: %d" % strip_len) clockwise = strip_len < 0 strip_len = abs(strip_len) strip = [] indices = [] for k in range (strip_len): # { bytes = self.file.read(2) index = struct.unpack('H', bytes)[0] indices.append(index) index = self.index_lookup[index] if chunk_head == 64: strip.append({ 'index' : index, 'uv' : { 'u' : 0, 'v' : 0 } }) continue bytes = self.file.read(4) uv = struct.unpack('hh', bytes) u = uv[0] v = uv[1] if chunk_head == 65: u = u / 255.0 v = v / 255.0 elif chunk_head == 66: u = u / 1023.0 v = v / 1023.0 strip.append({ 'index' : index, 'uv' : { 'u' : u, 'v' : v } }) for k in range(len(strip) - 2): if ((clockwise and not (k % 2)) or ( not clockwise and k % 2)): a = strip[k + 2] b = strip[k + 1] c = strip[k + 0] else : a = strip[k + 2] b = strip[k + 0] c = strip[k + 1] ai = a['index'] bi = b['index'] ci = c['index'] va = self.vertex_list[ai] vb = self.vertex_list[bi] vc = self.vertex_list[ci] face = NinjaFace() face.setMatIndex(mat_index) face.setIndexes(ai, bi, ci) face.setNormals(va.norm, vb.norm, vc.norm) face.setDiffuseUv(a['uv'], b['uv'], c['uv']) self.face_list.append(face) self.file.seek(snap_to, 0) self.strip_count = self.strip_count + 1 else: print("Unknown File Position: 0x%08x" % self.file.tell()) return None def readNmdm(self): if self.debug: print("READING NINJA MOTION") # Read Header bytes = self.file.read(12) p = struct.unpack('IIHH', bytes) table_ofs = self.pof + p[0] frame_count = p[1] flags = p[2] factor_count = p[3] & 0x03 spline_interpolation = p[3] & 0x40 user_function_interpolation = p[3] & 0x80 anim = NinjaMotion() anim.setName(len(self.anim_list)) anim.setFrames(frame_count) anim.setSkeleton(self.bones) self.anim_list.append(anim) if self.debug: print("Frame Count: %d" % frame_count) print("Flags: %x" % flags) print("Animation Name: ", anim.name) if flags & 0x01: print("Has Position!") if flags & 0x20: print("Has Position!") if flags & 0x01: print("Has Position!") # Read Motion Table anim_vals = [] self.file.seek(table_ofs, 0) for i in range(len(self.bones)): entry = { 'bone_index' : i, 'pos_ofs' : 0, 'pos_num' : 0, 'rot_ofs' : 0, 'rot_num' : 0, 'scl_ofs' : 0, 'scl_num' : 0 } if flags & 0x01: bytes = self.file.read(4) p = struct.unpack('I', bytes) if(p[0]): entry['pos_ofs'] = self.pof + p[0] if flags & 0x20: bytes = self.file.read(4) p = struct.unpack('I', bytes) if(p[0]): entry['rot_ofs'] = self.pof + p[0] if flags & 0x04: bytes = self.file.read(4) p = struct.unpack('I', bytes) if(p[0]): entry['scl_ofs'] = self.pof + p[0] if flags & 0x01: bytes = self.file.read(4) p = struct.unpack('I', bytes) entry['pos_num'] = p[0] if flags & 0x20: bytes = self.file.read(4) p = struct.unpack('I', bytes) entry['rot_num'] = p[0] if flags & 0x04: bytes = self.file.read(4) p = struct.unpack('I', bytes) entry['scl_num'] = p[0] anim_vals.append(entry) c = 2 * 3.141592 / 0x10000; for entry in anim_vals: boneIndex = entry['bone_index'] self.file.seek(entry['pos_ofs'], 0) for i in range(entry['pos_num']): bytes = self.file.read(16) p = struct.unpack('Ifff', bytes) frame = p[0] vec3 = [ p[1], p[2], p[3] ] anim.appendKeyFrame(boneIndex, frame, vec3, 'pos') self.file.seek(entry['rot_ofs'], 0) for i in range(entry['rot_num']): bytes = self.file.read(8) p = struct.unpack('Hhhh', bytes) frame = p[0] vec3 = [ p[1]*c, p[2]*c, p[3]*c ] anim.appendKeyFrame(boneIndex, frame, vec3, 'rot') self.file.seek(entry['scl_ofs'], 0) for i in range(entry['scl_num']): bytes = self.file.read(16) p = struct.unpack('Ifff', bytes) frame = p[0] vec3 = [ p[1], p[2], p[3] ] anim.appendKeyFrame(boneIndex, frame, vec3, 'scl') anim.save(boneIndex) return None def exportObj(self): pre, ext = os.path.splitext(self.model_name) pre = pre.replace('/', '_') f = open('output/' + pre + '.OBJ', 'w') for vert in self.vertex_list: f.write('v') f.write(' %.03f' % vert.pos['x']) f.write(' %.03f' % vert.pos['y']) f.write(' %.03f' % vert.pos['z']) f.write('\r\n') f.write('\r\n') for face in self.face_list: f.write('f') f.write(' %d' % (face.index[0] + 1)) f.write(' %d' % (face.index[1] + 1)) f.write(' %d' % (face.index[2] + 1)) f.write('\r\n') f.write('\r\n') f.close() return None def export(self): pre, ext = os.path.splitext(self.model_name) pre = pre.replace('/', '_') f = open('output/' + pre + '.DMF', 'wb') # Write Magic f.write(b'DASH') f.write(struct.pack('HHII', 1, 5, 0x10, 0x06)) #Write Table f.write(b'tex\0') f.write(struct.pack('III', 0, 0, 0)) f.write(b'mat\0') f.write(struct.pack('III', 0, 0, 0)) f.write(b'vert') f.write(struct.pack('III', 0, 0, 0)) f.write(b'face') f.write(struct.pack('III', 0, 0, 0)) f.write(b'bone') f.write(struct.pack('III', 0, 0, 0)) f.write(b'anim') f.write(struct.pack('III', 0, 0, 0)) # Write Textures pos = f.tell() count = len(self.tex_list) f.seek(0x18, 0) f.write(struct.pack('II', pos, count)) f.seek(0, 2) for tex in self.tex_list: tex.createDmfEntry(f) for tex in self.tex_list: tex.writeDmfTexture(f) # Write Materials pos = f.tell() count = len(self.mat_list) f.seek(0x28, 0) f.write(struct.pack('II', pos, count)) f.seek(0, 2) for mat in self.mat_list: mat.createDmfEntry(f) # Write Vertices pos = f.tell() count = len(self.vertex_list) f.seek(0x38, 0) f.write(struct.pack('II', pos, count)) f.seek(0, 2) for vert in self.vertex_list: vert.createDmfEntry(f) while f.tell() % 0x10: f.write(struct.pack('B', 0)) # Write Faces pos = f.tell() count = len(self.face_list) f.seek(0x48, 0) f.write(struct.pack('II', pos, count)) f.seek(0, 2) for face in self.face_list: face.createDmfEntry(f) while f.tell() % 0x10: f.write(struct.pack('B', 0)) # Write Bones pos = f.tell() count = len(self.bones) f.seek(0x58, 0) f.write(struct.pack('II', pos, count)) f.seek(0, 2) for bone in self.bones: bone.createDmfEntry(f) #Write Animations pos = f.tell() count = len(self.anim_list) f.seek(0x68, 0) f.write(struct.pack('II', pos, count)) f.seek(0, 2) for anim in self.anim_list: anim.generateDmfEntry(f) for anim in self.anim_list: anim.writeDmfAnimation(f) f.close() return None